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I. Mrkonjića and S. Barǐsić
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Abstract. The usual mean field decoupling procedure applied to the slave-particle representations of the
problems with strong local interaction produces a resonant band, but violates the Luttinger sum rule for
the physical single-electron propagator. The number of occupied resonant states is small and equal to the
deviation from the sum rule, shedding doubt on the overall results. It is therefore argued and illustrated on
the example of the Emery model for the high-Tc superconductors that, through the consistent application
of the mean field procedure to the Hamiltonian and the propagators, the sum rule is restored and the
resonant band conserved. In addition to the resonant band, the electron spectrum contains large number
of occupied states close to the bare site-energy of the site with strong repulsion. These results are also
related here to the other similar decoupling problems, which also lead to the breakdown of the Luttinger
sum rule.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions

1 Introduction

The study of strongly interacting electron systems has
been one of the most active research fields of solid state
physics for a long time. In the present context, it is appro-
priate to mention Friedel/Anderson and Kondo impurity
problems, extended to the case of Anderson lattice, the
(extended) Hubbard models and their t-J derivatives and
the Emery model of the CuO2 conducting planes for the
high-Tc rare-earth oxides with its t-J limit.

The general feature of many approaches to the above
lattice problems is the appearance of the resonant band at
the Fermi level. This includes the non-crossing approxima-
tion (NCA) of the perturbation theory in terms of inter-
site hybridization [1–5], the dynamical mean field theory
(DMFT) [6–8], the singlet and triplet bands in t-J mod-
els [9]. The simplest (and the earliest [10]) approach which,
after the inclusion of the Gaussian fluctuations around the
saddle point [2,11–13], results in the resonant band [14–16]
is the mean field slave boson (MFSB) approximation. The
problem with this approximation is however, that the error
in the Luttinger sum rule, giving the total number of the
occupied states, is strictly equal to the number of states in
the resonant band, shedding doubt on its results. Similar
error occurs in some other decoupling schemes [17]. Nev-
ertheless, the concept of the resonance is quite appealing
because it appears also in the methods which obey the
Luttinger sum rule by construction. In particular, it is in-
teresting to note in this respect that singlet and triplet
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bands in the t-J models have the site energy similar to
the one of the corresponding MFSB resonant band.

Here, it will be argued that it is possible to deal with
the error in the Luttinger sum rule, conserving simultane-
ously the concept of the resonant band. In contrast to the
band structure, the Luttinger sum rule corresponds to the
average numbers of fermions on various lattice sites, i.e. it
is a local, static property, involving averaging over wave-
vectors and frequencies. The related static and dynamic
properties are therefore discussed consecutively here.

After the short introduction concerning the slave bo-
son approach, Section 2 defines general static and dynamic
aspects of the problem and sets the MFSB theory in this
context. Section 3 is devoted to the description of the
MFSB approach and suggests how to deal with static and
dynamic problems behind the breakdown of the Luttinger
sum rule in this approach. Section 4 illustrates the mecha-
nism of the MFSB theory on the specific case of the Emery
model for the CuO2 planes for high-Tc superconductors,
discussing time and space scales involved. In Section 5 the
Luttinger sum rule is reestablished by the correction of the
overall weight of the terms corresponding to various MF
time and space scales, without changing the scales them-
selves. In this section the behavior of the resonant band
and the dispersionless background is also briefly discussed.
Section 6 compares the MFSB results to the perturbation
approach in absence of the long-range order, relating the
long-range ordering of the former to the long-time ordering
of the latter. In this section some similar previous results
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are discussed in this spirit. Finally, the present results are
briefly summarized in Section 7.

2 Slave-boson approach – General

Many methods used in the treatment of strongly
correlated systems with local interaction Ud between
physical fermions introduce auxiliary fermions and
bosons [3,10,18–22] on the interaction sites. Although
the transformation of the underlying Hamiltonian h =
h0 + Ud

∑
R nd

R,↑n
d
R,↓ to new particles is exact at the out-

set, it actually becomes useful in methods and approxima-
tions applied to the coupled fermion-boson system. Espe-
cially simple situation, considered also here, occurs when
only the on-site interaction Ud is taken to infinity, because
then only one fermion field fR and one boson field bR are
sufficient: these fields are introduced by expressing the cre-
ation operator of the physical fermion cd†

R on the interac-
tion site R as a composite, gauge-invariant fermion-boson
entity

cd†
R = fR

†bR. (1)

An important role in such approach plays the resulting
local gauge invariance of the slave boson Hamiltonian h,
which implies the conservation of the “local charge”

QR = b†RbR + nf
R = 1, (2)

where nf
R is the number of f-fermions of both spins.

QR = 1 means in particular that breaking of local gauge
symmetry, either towards QR = 0 or QR > 1 subspaces is
forbidden.

The first immediate consequence of the require-
ment (2) is the vanishing of the expectation value of b†R
and bR in the ground state |G〉 of the QR = 1 subspace,
〈G|b†R|G〉 = 〈G|bR|G〉 = 0 (and, of course, 〈G|f †

R|G〉 =
〈G|fR|G〉 = 0).

The second consequence is what is usually called the
Luttinger sum rule for the reasons which will become clear
later. According to equation (1) the number operator is

nd
R = nf

RbRb†R . (3)

Realizing that the operator nf
Rb†RbR vanishes in the QR =

1 subspace, it follows that

〈nd
R〉 = 〈G|nf

RbRb†R|G〉 = 〈nf
R〉. (4)

This relation generates the Luttinger sum rule. For later
convenience, it is interesting to note that this equality is
however violated when the decoupling approximation is
applied to equation (4),

〈nd
R〉 ≈ 〈G|nf

R|G〉〈G|bRb†R|G〉 = 〈nf
R〉(1 + 〈b†RbR〉). (5)

The error occurs after the f †
RbR interaction and/or dop-

ing of the interaction-sites are turned on, leading to
〈b†RbR〉 > 0. It is obviously removed when transitions to

the intermediate excited states in the QR = 1 subspace,
omitted in equation (5), are also included.

While equations (2–5) are based only on the local
gauge invariance of h, associated with equation (1), in the
following text the class of Hamiltonians h0 under consid-
eration will be restricted to those with intersite hybridiza-
tion term (bi)linear in fermion operators cd†

R or cd
R, mem-

bers of which are e.g. Hubbard’s, Emery’s and Anderson’s
lattice Hamiltonian.

The Ud = ∞ slave boson approaches [23–27] do not
usually work with the restriction to QR = 1 and the slave
boson Hamiltonian h0 of h = h0 + Ud

∑
R nd

R,↑n
d
R,↓, but

rather use the Lagrange multipliers λR to construct H =
h0 +

∑
R λR(QR − 1), allowing fluctuations of QR, and

searching for the ground state and the excited states of
H . This introduces the usual many-body techniques into
the problem, the perturbation schemes in particular.

Since H is itself locally gauge invariant, particulary in-
structive are the approaches perturbative in intersite hy-
bridization, which start from the ground state |G0〉 of the
unperturbed (non-hybridized) system is in the QR = 1
subspace, thus with vanishing average values of b†R, bR,
f †

R and fR. It is then possible to show [13] that the single
particle propagators of f-fermions and b-bosons remain lo-
cal to all orders of the perturbation theory. The physical
particle propagator between two interaction sites is

Gd
RR′(τ) = −i〈G|Tf †

R(τ)bR(τ)fR′b†R′ |G〉, (6)

satisfying the two-particle Bethe-Salpeter equation shown
in Figure 1, which is however non-local when four-leg hy-
bridization vertex is nonlocal, as it is in problems with the
lattice of interacting sites, discussed here.

+
R R,R’RRGRR’=

d

Fig. 1. Bethe-Salpeter representation of the physical single
particle propagator in the slave boson theory. Dotted line: ex-
act single boson propagator, solid line: exact single fermion
propagator, square: exact four-leg vertex, hybridizing interac-
tion sites at R, R′.

The first local term in Figure 1 corresponds at τ = 0+

to the approximation of equation (5), i.e. it violates the
Luttinger sum rule, independently on the dynamics in-
volved in the fermion and boson single-particle propaga-
tors building it up. The correction to equation (5), which
comes from the excited states, is related then to the sec-
ond term of Figure 1, taken at τ = 0+ and R = R′. With
this term the Luttinger sum rule is obeyed through equa-
tion (4), since |G〉, generated by the exact perturbation
theory with gauge-invariant Hamiltonian from |G0〉, be-
longs itself to the QR = 1 space. This, however is not
necessarily true in approximate perturbative approaches,
which start from |G0〉.

The dynamical analysis of Figure 1 carried out in
non-crossing approximation (NCA), starting from |G0〉
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for λR = λ, suggests [13] that the single boson propa-
gator develops a central peak by the transfer of the spec-
tral weight from the frequency λ. This peak is responsible
for the formation of the resonant band in Gd. The situ-
ation is relatively simple when the transfer of the boson
spectral weight is complete, and the width of the cen-
tral peak smaller than the f-fermion propagation scale:
f-fermions respond adiabatically to the soft b-boson. In
this sense (only) slow boson field acts as a static mean
field 〈b†R〉 = 〈bR〉 �= 0 and its quantum fluctuations can
be restored requiring finally [bR, b†R] = 1. Even when the
transfer of the spectral weight is incomplete, an attempt
to separate the slow and the fast component of the boson
field can be made, associating the slow component with
finite static 〈b†R〉 = 〈bR〉 = b0 and the fast component with
the boson b′R. Neglecting thus the width of the boson cen-
tral peak, the resonant band in Gd is obtained with the
dispersion in the reciprocal k space emphasized at the ex-
pense of the “lifetime” effects. Such a view of MFSB will
prove useful here. This line of thinking appeared also more
or less explicitly and consistently in some earlier slave bo-
son works [13,15,28].

3 MFSB local statics and dynamics

In the MFSB approximation the ground state is approxi-
mated by the direct product of fermion and boson states

|G〉 ≈ |GMF 〉 = |G0(b)〉 × |G0(f)〉. (7)

With the ansatz (7) in equation (4), the Luttinger sum
rule is violated again

〈nd〉 ≈ 〈GMF |nf
RbRb†R|GMF 〉 = 〈nf

R〉(1 + 〈b†RbR〉). (8)

Although the error in equation (8) looks just the same as
in equation (5), its formal origin is completely different.
While in equation (5) the error arises from neglecting the
excited states in the QR = 1 space, in equation (8) it is
due to the component of |GMF 〉 in the unphysical QR > 1
space, where the operator nfb†RbR differs from zero. In-
deed, the excited states are not involved in equation (8),
because the expectation value of the product of f and b
operators for |GMF 〉 separates exactly into the product of
their expectation values.

Dealing with the error in equation (8), it is useful to
realize that the choice of the SB Hamiltonian h0 and the
particle number n, representing the physical problem, is
not unique. All SB representations of the original physical
problem which are the same in the QR ≤ 1 subspace are
in principle equally good, even if they differ in the un-
physical QR > 1 subspace. However, when dealing with
states, such as |GMF 〉, which leak into the QR > 1 sub-
space, the best representation for h0 and n is the one which
is the least sensitive to the component of |GMF 〉 in the
QR > 1 subspace. This representation is chosen noting
that νnf

Rb†RbR, with ν scalar, can be added to any oper-
ator in the QR = 1 space, without changing anything in

this (and QR = 0) subspace, where this operator vanishes.
This means in particular that nd

R can be represented by

nd
R = nf

R(bRb†R + νb†RbR) (9)

instead of equation (3). Irrelevant in the exact calcula-
tions, the choice of ν in equation (9) is important for any
approximate procedure involving the QR > 1 space. Then
the only way to keep nd

R independent on the boson vari-
ables, e.g. in n and H , as it is in the exact calculations, is
to choose [23–27]

ν = −1, nd
R = nf

R (10)

in equation (9), extending this relation from the QR ≤ 1
subspace to the whole boson-fermion Hilbert space.

Of course, with equation (10), the Luttinger sum rule
〈nd

R〉 = 〈nf
R〉 is automatically satisfied. What remains is

to show that it can appear in the limit R = R′, τ = 0+

of the physical propagator Gd
RR′ (τ), which, after replacing

|G〉 by |GMF 〉 in equation (6), violates, as it stands, the
Luttinger sum rule, according to equation (8). The local
propagation operator in equation (6) should therefore be
reconstructed in order to be consistent with the represen-
tation (10) of the number operator. This is achieved by
noting first that ν(τ)f †

RfRb†RbR with ν(τ) a scalar func-
tion of τ can be added to the propagation operator at
R = R′ in equation (6),

Tf †
R(τ)fRbR(τ)b†R + ν(τ)f †

RfRb†RbR (11)

without changing Gd
RR′ (τ) of equation (6). With this

choice of the local propagation operator, the Luttinger
sum rule is automatically obeyed again with any state in-
stead of |G〉 in equation (6), provided that for states which
leak in the QR > 1 space, |GMF 〉 in particular,

ν(τ = 0+) = −1. (12)

On the other hand, ν(τ) is irrelevant for propagation in
the QR = 1 subspace, i.e. the modification (11) cannot be
used straightforwardly to correct the error of equation (5):
ν(τ) helps only in the QR > 1 subspace. In the second step
of the MFSB treatment, it should be shown that ν(τ) can
be chosen consistently with aforementioned physical and
usual formal constraints concerning the propagator of the
single physical particle.

4 MFSB statics and dynamics: Emery model

The extension to finite times τ requires the introduction
of time and space scales generated by MFSB approxima-
tion. To some extent this is model-dependent and the
Ud = ∞ Emery [29] model for CuO2 lattice of high-
Tc cuprates will be used for illustration here. Quite rich,
it contains the Hubbard-like and charge-transfer (valence
fluctuation) limits [23,27,30,31]. At finite t′ and for the
appropriate band-fillings, it is similar in many respects to
the Anderson lattice model [3,4].



444 The European Physical Journal B

The corresponding Hamiltonian h0 is

h0 =
∑

s,R

{εdn
f
R + εp

∑

i=x,y

np
R,i (13)

+
∑

i=x,y

[t0c
†
R,s(pR,i,s +

∑

r

t0(r)pR+r,i,s + h.c.)]

− t′[p†R,x,s(pR,y,s +
∑

r

t′(r)pR+r,y,s + h.c.)]},

with r denoting the nearest neighbors. t0(r) and t′(r) are
±t0 and ±t′, respectively, according to the usual conven-
tion [32]. c†R of equation (1) is combined here with the
fermions fields p†R associated with the oxygen sites, and
ν = −1 of equation (10) is chosen in the term describ-
ing the Cu-site energy εdn

d
R and the number of physi-

cal fermions in the CuO2 unit cell, nR = nf
R + 2np

R. H
with λR = λ is considered next, with |G0(f)〉 in equa-
tion (7) chosen spin unpolarized. The MF Hamiltonians
for f-fermions and b-bosons are obtained as usual by av-
eraging out with |G0(b)〉 and |G0(f)〉 respectively, the b
and f fields. Taking |G0(b)〉 as a site product of wave-
functions |GR

0 (bR)〉 with finite, translationally invariant
b0 = 〈G0(b)|b†R|G0(b)〉 = 〈G0(b)|bR|G0(b)〉, consistent
with λ = λR, the MF Hamiltonian describing f-fermions is
h0 of equation (13) with the effective (renormalized) pa-
rameters t = t0b0 and εf = εd + λ, while εp and t′ remain
unchanged. On the other hand, when f-field is averaged
out (note that 〈f †

R〉 = 〈fR〉 = 0), the Hamiltonian of the
displaced, but uncoupled harmonic oscillators bR = b0+b′R
with frequency λ is obtained in the saddle point. |G0(b)〉
has thus the property 〈b†RbR〉 = 〈b†R〉2 = 〈bR〉2 = b2

0 and
〈b′†Rb′R〉 = 〈b′†R〉2 = 〈b′R〉2 = 0. Here again the choice
ν = −1 in equation (13) is important because it leaves λ

to govern alone the energy λb′†Rb′R of the dispersionless b′R
boson. Finally, λ and b0 are obtained from the minimiza-
tion of the approximate ground state energy [30,31] of the
physical particles E = 〈GMF |H |GMF 〉 at fixed number of
physical particles n = 〈nf 〉 + 2〈np〉, or of Ω = E − µn at
fixed µ. µ and 〈n〉 are related by

〈n〉 =
∫ µ

gc(ε)dε, (14)

where gc(ε) is the density of states of the conducting band
εc(k) of the f-fermions, assuming for simplicity that the
Fermi level crosses only one band [30,32] at µ = εc(k).

Turning now to the propagation of the physical parti-
cles in time and space, as defined by MF Hamiltonians for
f and b particles, it follows that

iGd
RR′ (τ) ≈ b2

0 〈G0(f)|Tf †
R(τ)fR′ |G0(f)〉, R �= R′, (15)

and

iGd
RR(τ) ≈ 〈G0(f)|Tf †

R(τ)fR|G0(f)〉 (16)

×(b2
0 +〈G(b0)|Tb′R(τ)b′†R|G(b0)〉) +

1
2
ν(τ)〈nf 〉b2

0.

Equation (15) is obtained by using |GMF 〉 of equation (7)
in equation (6), remembering that the boson b′R = bR− b0

is local and in its ground state 〈b′†R〉2 = 〈b′R〉2 = 〈b′†Rb′R〉 =
0, while equation (16) uses the propagation operator (11)
concomitantly with |GMF 〉 in equation (6), in agreement
with the discussion leading to equation (12). The same
equations are valid in the MFSB approximation for any
model which generates a local boson b′R. As will become
clear now, equations (16) and (12) become the Luttinger
sum rule for physical particles in the usual sense.

5 The Luttinger sum rule

For this purpose, the appropriate MF free-particle propa-
gators [12,1] of the Emery model are introduced now. The
Fourier transform of fermion propagator Gf for the lowest
occupied f-p band projected on the occupied states with
µ from equation (14) is

Ĝf (ω,k) =
|mc

f (k)|2θ(µ − εc(k))
ω − εc(k) − iη

, (17)

where again εc(k) is the dispersion of f-p fermion conduc-
tion band and |mc

f (k)|2 is the probability of finding f-p
fermion on the Cu-site. This factor determines explicitly
the average number of f -fermions on Cu site

π−1

∫ ∑

k

ImĜf (ω,k)dω =
∑

k

θ(µ − ε(k))|mf (k)|2

=
1
2
〈nf 〉. (18)

On the other hand, MF boson propagator
〈G(b0)|Tb′(τ)b′†|G(b0)〉 in equation (12) is given by

Db′(ω) =
1

ω − λ + iη
. (19)

As already mentioned, dynamics of the displaced boson
b′ is local and determined by the frequency λ (Cartesian
gauge of the boson field is meant here [12]). Only +iη
term appears in equation (19) because −iη component,
associated with 〈b′†Rb′R〉 �= 0, vanishes for the harmonic
b′-boson in its ground state.

Combining equations (15,16,17) and (19), Gd(ω,k)
reads

Gd(ω,k) = b2
0G

f (ω,k) +
∫

dk
(2π)2

Ĝf (ω + λ,k)

− iπ

2
〈nf 〉ν(ω)b2

0. (20)

Here, according to equations (15) and (16), Gf is the full
free f-fermion propagator including occupied and unoccu-
pied f-fermion states, unlike Ĝf , which involves only the
occupied states. The latter appears alone in the second
term of equation (20), because Db′ of equation (19) cou-
ples in equation (16) only to the −iη component Ĝf of
Gf , given by equation (17).

The Luttinger sum rule of equation (12) sets weak re-
quirement on the Fourier transform ν(ω) of ν(τ). Further
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restriction on ν(ω) comes from the requirement that the
spectral density π−1ImGd(ω,k) is positively definite. Both
these requirements can be satisfied by various functions
ν(ω), some of which change qualitatively spectral density
of d-electrons given by the first term, describing the reso-
nant band, and the second term related to dispersionless
background. ν(ω) will be chosen here to respect the time
(“slow” and “fast”) and space scales introduced by the
MF theory in the b-boson behavior, without introducing
the new ones. It is thus meant to allow only the change in
the respective normalization of the first (“adiabatic”) and
second (“anti-adiabatic”) term in equation (20).

In order to find the appropriate ν(ω), it is useful to
note that equation (20) corresponds to the decomposi-
tion of 〈nd〉 in 〈nd〉 = b2

0〈nf 〉 + 〈nf 〉 − b2
0〈nf 〉, from

equation (16) or directly from equation (20), using equa-
tions (17) and 18). Equation (20) then shows that if the
third term were used to renormalize the first, resonant
band term by cancelling its contribution to 〈nd〉, the spec-
tral density at a given k would not be positively definite in
the energy range εc(k) ≈ εd +λ of the resonant band. The
third dispersionless, term therefore has to be used for the
normalization of the second term, belonging to the energy
range εc(k) − λ ≈ εd, which is also dispersionless (due to
the local nature of slave boson b′). This leads immediately
to the final expression for the physical propagator

Gd(ω,k) = b2
0G

f (ω,k)

+ (1 − b2
0)

∫
dk

(2π)2
Ĝf (ω + λ,k). (21)

Equation (21) can now be interpreted as leading to the
usual Luttinger sum rule for physical fermions: With µ
calculated under relation 〈nd〉 = 〈nf 〉 from equation (14)
for f -fermions, this equality is obtained back from equa-
tion (21). Moreover, the resonant band at the energy εc(k)
close to εd + λ, is just the MF f -band, with its weight
rescaled by b2

0. The Fermi surface in the resonant band
of equation (21) µ = εc(k) is of the same shape as the
Fermi surface of f -fermions in equation (14). Under the
Fermi surface of the resonant band, oxygen component in-
cluded, there are 〈nd〉 + 2〈np〉 occupied states, the local
contribution of equation (21) at energy εc(k)−λ, close to
εd, included too.

Further discussion depends on the energy scales λ, b0t0
and t′ involved in equation (21) and b0 determined from
the minimization of the ground state energy. When λ is
large with respect to the bandwidth of εc(k), controlled
by b0, the narrow resonant band is well separated from
the narrow dispersionless background. On the other hand,
when λ becomes of the order of the bandwidth, two spec-
tral densities tend to come together. For large εp − εd

and small positive or negative doping, this corresponds to
charge-transfer (CT) or Hubbard-like limits, respectively,
for the MFSB λ, b0 values of the Emery model [30,31].

6 Relation to the perturbation theories

Equation (21) was obtained retaining the component
of |GMF 〉 in the QR > 1 space, but choosing appro-
priately the slave boson representation of number and
single-particle propagation operators to compensate for
its effects. The correction in equation (21) is achieved
by introducing a local, deep level ν term, in line with
the understanding that the straightforward MF approxi-
mation treats poorly the local correlations, better taken
into account e.g. by the DMFT [6]. After the introduc-
tion of this term Gd of equation (21) is meant to approx-
imate the “exact” Gd and it is interesting to compare
it with the result of the adiabatic/antiadiabatic separa-
tion in the Bethe-Salpeter equation of Figure 1. When
the (local) bR-boson propagator is assumed to separate in
the central peak entirely responsible for 〈b†RbR〉 and the
antiadiabatic component, analogous to the one of equa-
tion (16), i.e. with λ sufficiently large, the first term in
Figure 1 generates, as easily seen, the first two terms in
equation (16), which correspond at τ = 0+ to equation (5).
The ν-correction in equation (16) corresponds then nec-
essarily to the second term in Figure 1 taken at R = R′.
At τ = 0+, it corresponds then to the contribution of
the QR = 1 excited states to equation (4). In addition,
at R �= R′, the second term corresponds to the contri-
bution of equation (15). All this with the identification
〈b†RbR〉 = b2

0, but with 〈b†R〉 = 〈bR〉 = 0. In this repre-
sentation the ν-term corrects the error in equation (5), as
it was correcting it in the MFSB equation (8), establish-
ing the bridge between two at first sight unrelated errors,
assured by the same, adiabatic/antiadiabatic separation
in the background. Further study of this correspondence
on the level of internal consistence of the Bethe-Salpeter
equation of Figure 1 is however required.

An expression for Gd similar to equation (21), which
also conserves the Luttinger sum rule, was proposed ear-
lier [28], (also) based on the analysis of the time and space
scales of the (outright) Hubbard model. A mixed picture,
combining the long-time treatment of the local term and
long-range expression for the non-local terms was used
there. In the treatment of the local term, the propagation
operator (11) was replaced by Tf †

R(τ)fR in equation (6)
with |GMF 〉 instead of |G〉. In the intermediate step bR(τ)
is replaced by bR, respecting in fact the time ordering of b†R
and bR(τ). The obvious result is Gd

RR = Gf
RR. The same

result follows from equation (6) assuming that the transfer
of the boson spectral weight to low frequencies in Figure 1
is complete. Further on, Gd

RR = Gf
RR is artificially decom-

posed according to Gd
R,R = b2

0G
f
R,R+(1−b2

0)G
f
R,R, instead

of equation (16), while at R �= R′ equation (15) was re-
tained with general b2

0, Gd
R,R′ = b2

0G
f
R,R′ . On the other

hand, equation (21), with Gd
R,R = b2

0G
f
R,R + (1− b2

0)Ĝ
f
R,R

and Gd
R,R′ = b2

0G
f
R,R′ in obvious notations, suggests that

when b2
0 is taken equal to unity in the local Gd

R,R term,
it should be taken as such in the intersite term too. In
this case the earlier expression [28] and equation (21) re-
duce to the same Gd(k) = Gf (k). However, for a general
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b2
0 < 1, equation (21) is making difference between Gf

R,R

and Ĝf
R,R, for the reasons explained in its derivation, mod-

ifying thus the earlier suggestion.

7 Summary

In summary, the present results are useful in several as-
pects. As the first, directly, the Luttinger sum rule of the
MFSB theory places unambiguously the chemical poten-
tial in the resonant band, defining thus the shape of the
Fermi surface [30,31], the property best seen by ARPES
experiments [33]. As the second, more profoundly, it asso-
ciates the sum rule problem with local contribution at
large energies, suggesting that the low energy physics,
associated with the formation of the resonant band, is
weakly affected by those problems. As the third, suggest-
ing that the long-range ordering of the MFSB theory can
be understood to some extent as a long-time ordering of
locally gauge-invariant theories, MFSB approximation can
serve as a useful eye guideline for the more sophisticated
approaches to the understanding of the low energy be-
havior of the strongly correlated systems, high-Tc super-
conductors included. In particular, the Brinkmann-Rice
metal-insulator phase transition obtained in the straight-
forward MFSB theory [23,30,31], is expected therefore to
correspond to the crossover in 〈b†RbR〉 in more advanced
approaches. In this spirit the MFSB theory can serve as
a reasonable starting point for the study of the magnetic
and superconducting correlations in the strongly interact-
ing systems.

We acknowledge useful discussions with E. Tutǐs. This work
was supported by Croatian Ministry of Science under the
project 119-204.
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